skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McClain, Sophia M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Surface patterning of inorganic nanoparticles through site-selective functionalization with mixed-ligand shells or additional inorganic material is an intriguing approach to developing tailored nanomaterials with potentially novel and/or multifunctional properties. The unique physicochemical properties of such nanoparticles are likely to impact their behavior and functionality in biological environments, catalytic systems, and electronics applications, making it vital to understand how we can achieve and characterize such regioselective surface functionalization. This Feature Article will review methods by which chemists have selectively modified the surface of colloidal nanoparticles to obtain both two-sided Janus particles and nanoparticles with patchy or stripey mixed-ligand shells, as well as to achieve directed growth of mesoporous oxide materials and metals onto existing nanoparticle templates in a spatially and compositionally controlled manner. The advantages and drawbacks of various techniques used to characterize the regiospecificity of anisotropic surface coatings are discussed, as well as areas for improvement, and future directions for this field. 
    more » « less